P-ISSN: 1410 – 9875 E-ISSN: 2656 – 9124 http://jurnaltsm.id/index.php/JBA

IMPLEMENTATION OF BLOCKCHAIN TECHNOLOGY IN ACCOUNTING INFORMATION SYSTEMS: A SURVEY STUDY OF LOCAL GOVERNMENTS IN YOGYAKARTA

NABILA SALMA HANIFAH* HAFIEZ SOFYANI

Muhammadiyah University of Yogyakarta, Jl. Brawijaya, Yogyakarta, Indonesia hafiez.sofyani@ummy.ac.id, nabila.salma.psc23@mail.umy.ac.id

Received: September 11, 2025; Revised: October 25, 2025; Accepted: October 31, 2025

Abstract: This study examines the adoption of Blockchain Technology in Accounting Information Systems (AIS) within local governments in Yogyakarta using the Unified Theory of Acceptance and Use of Technology (UTAUT) framework. Specifically, it investigates the effects of performance expectancy, effort expectancy, social influence, and facilitating conditions, along with trust and regulatory support, on behavioral intention and actual usage. A quantitative survey was conducted among accounting and IT personnel in local government agencies, and data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM). The results indicate that performance expectancy, trust, and regulatory support significantly and positively influence the intention to adopt blockchain-based AIS, while facilitating conditions are more closely associated with actual usage. Trust mediates the relationship between effort expectancy and intention, and regulatory support strengthens the effect of performance expectancy. The study contributes to the extension of the UTAUT model by incorporating trust and regulatory support in a public sector context, offering theoretical and practical implications for enhancing blockchain adoption. Findings suggest that improving system reliability, digital infrastructure, and regulatory clarity can increase the likelihood of successful implementation in local governments.

Keywords: Accounting Information Systems, Blockchain Technology, Local Government, Regulatory Support, Technology Adoption, Trust, UTAUT.

INTRODUCTION

Technological advancement in the public sector is a strategic measure to realize good governance, particularly in the domain of financial management and accountability (Wong et al. 2024). In Indonesia, local governments are under increasing pressure to enhance transparency, efficiency, and accuracy of financial reporting in line with national bureaucratic reform (BPKP 2022). Among emerging innovations, Blockchain Technology a

distributed ledger that ensures data integrity, traceability, and transparency shows considerable promise. Recent studies emphasize its potential to improve accounting information quality and integrate effectively with technologies such as IoT and XBRL (Norbu et al. 2024).

The adoption of blockchain technology in the public sector has received growing academic attention, owing to its potential to enhance transparency, accountability, and

operational efficiency in government services. Prior studies have investigated its application in areas such as land administration, digital identity, and public record management, yielding promising outcomes in data integrity and bureaucratic streamlining (Rekunenko et al. 2025; Koo & Cuandra, 2022). However, these studies predominantly originate from advanced economies contexts characterized by well-established technological infrastructure and regulatory frameworks raising concerns about the transferability of these findings to developing-country settings (Ramos & Queiroz 2022; Cahyono 2023).

In developing countries, blockchain adoption research remains limited and largely conceptual. Many contributions emphasize the potential benefits or discuss policy-level challenges without delivering empirical insights into how public organizations perceive and approach blockchain (Azmi & Nugroho 2023). Especially underexplored is the integration of blockchain into Accounting Information Systems (AIS), which are critical for public financial governance. The few existing studies that address blockchain in public-sector AIS tend to center on technical feasibility or strategic while overlooking advantages, organizational and contextual determinants of adoption in real-world settings (Ummah & Sofyani 2024).

In the Indonesian context, empirical research on blockchain adoption in government remains particularly sparse. A recent survey across 24 government agencies from central to local levels identified relative advantage and stakeholder engagement as significant drivers of Diffusion of Innovation, while factors such as complexity. regulation, top management support, and competence had no significant effect; the diffusion remains at the informational stage (Islami & Mita 2022; Marselita 2024). Additionally, qualitative exploration blockchain's potential to combat corruption in the public sector highlighted the importance of top management support, organizational readiness,

and the promise of permissioned blockchain models but this work remains largely conceptual and has yet to be tested quantitatively (Indrayani & Widiastuti 2020; Pitria et al. 2024).

Notably, one study applying UTAUT to AIS within Indonesian local government indicates that facilitating conditions and trust are significant predictors of employees' intention to adopt blockchain in AIS (Setiawan et al. 2023). While this offers some empirical grounding, it remains one of the few localized studies and lacks broader theoretical integration and contextual depth regarding bureaucratic dynamics and regulatory constraints.

This study addresses these gaps by delivering robust empirical evidence on intention to adopt blockchain in local government AIS across Indonesia. Diverging from prior research that often emphasizes technical feasibility or conceptual promise, this research foregrounds the interplay of technological, organizational, and regulatory factors within bureaucratic environments (Indrayani & Widiastuti 2020; Widodo & Darma 2025). Grounding the analysis in the UTAUT framework and extending it appropriately, it offers nuanced, context-specific insights for policymakers in developina countries, while simultaneously enriching theoretical models of technology adoption in the public sector (Lita Permatasari et al. 2024; Tahar et al. 2023). In doing so, this study contributes both practically by informing strategies to facilitate blockchain integration into AIS and theoretically by refining and situating adoption models in a real-world, developing-country context.

To comprehensively understand technology adoption in public sector AIS, this study applies the Unified Theory of Acceptance and Use of Technology (UTAUT) encompassing performance expectancy, effort expectancy, social influence, and facilitating conditions (Venkatesh et al. 2003). Studies in the past five years have expanded UTAUT by integrating variables such as trust, institutional support, and awareness, especially relevant to blockchain

adoption in public governance (Judijanto & Gamaliel 2024).

Given public institutions unique decision-making hierarchies, budget limitations, and legal oversight, this research extends UTAUT by incorporating trust and regulatory support (Utami et al. 2023). Trust is essential for ensuring confidence in the security and validity of blockchain systems, while regulatory support offers legal clarity and policy incentives that foster technology uptake (Ramadhani et al. 2024). Contemporary international studies confirm that adding these variables enhances the predictive power of adoption models in highrisk public contexts.

This study contributes in three significant ways: (1) It generates context-specific empirical insights into the readiness and perception of local government personnel in Yogyakarta regarding blockchain-based AIS; (2) It enriches the public technology acceptance literature by extending UTAUT with trust and regulatory support; and (3) It employs PLS-SEM to empirically test a comprehensive model of blockchain adoption determinants in AIS. The findings are expected to fill both theoretical and empirical gaps and offer policy recommendations to enhance infrastructure, build stakeholder awareness, and develop regulatory frameworks supporting transparent, sustainable local financial management.

Blockchain Adoption in Accounting Information Systems in Local Governments

In recent years, blockchain technology has attracted significant attention in the public sector due to its potential to transform accounting information systems (AIS) through transparency, auditability. enhanced operational efficiency (Kumari & Devi 2022). By providing immutable and tamper-proof transaction records, blockchain can strengthen internal controls, mitigate fraud risks, and enable real-time verification in budgeting, procurement, and financial reporting (Pugna & Dutescu 2020). In the context of local governments, such

capabilities are particularly relevant given the persistent challenges of governance, accountability, and citizen trust in financial management systems (Han et al. 2023).

Despite these advantages, blockchain adoption in the public sector especially in developing countries remains limited. Common barriers include inadequate infrastructure, insufficient digital literacy among government personnel, resistance to organizational change, and unclear regulatory frameworks (Atik & Kelten 2021). In Indonesia, digitization of government financial systems has progressed through initiatives such as the Local Government Information (SIPD). System However. blockchain has not yet been formally integrated into most AIS platforms, reflecting the need for both technological readiness and strong behavioral intention from users such as accounting officers and IT staff in local government agencies (Zhen et al. 2021).

The successful adoption of blockchain in AIS within local governments requires not only investment in infrastructure but also an understanding of the behavioral, organizational, and institutional factors influencing adoption. This is especially important in public sector contexts, where decision-making often depends on trust in technology, compliance with legal frameworks, and alignment with broader governance objectives (Prux et al. 2021).

Theoretical Foundation

The adoption of blockchain technology in public sector Accounting Information Systems (AIS) can be comprehensively understood through the Unified Theory of Acceptance and Use of Technology (UTAUT) framework UTAUT identifies primary four determinants performance expectancy, effort expectancy, social influence, and facilitating conditions that significantly shape user intention and behavior toward technology adoption (Venkatesh et al. 2003; Padovani & Iacuzzi 2021). Over the past five years, numerous empirical studies have expanded UTAUT to examine blockchain adoption in government financial systems, emphasizing the interplay between organizational, technological, and regulatory factors.

Performance expectancy, or the degree to which blockchain is perceived to improve work performance, has been repeatedly shown to be a decisive factor in adoption intentions in public (Zheng 2021). Effort expectancy, related to system usability and complexity, plays a dual role—simplified processes encourage adoption, while high technical complexity can impede it unless balanced by adequate training and support (Sharma et al. 2022). Social influence, particularly leadership endorsement and peer support, is another strong driver, especially in collectivist administrative (Vincent et al. 2020). Facilitating conditions, including infrastructure readiness, regulatory frameworks, and skilled human resources, are critical enablers for blockchain integration sustainable in government AIS (Albrecht et al. 2021; Lardo et al. 2022).

Recent literature also highlights trust and organizational readiness as mediating factors in blockchain adoption for public financial management (Balios et al. 2020). Trust reduces perceived risks associated with blockchain's novelty, while readiness both technical and managerial ensures smoother implementation. Moreover, regulatory clarity and policy alignment have emerged as essential conditions, particularly in developing countries, to overcome resistance and uncertainty (Pham & Dau 2022; Rahmawati & Subardjo 2022). By integrating these insights, the UTAUT model provides a robust theoretical foundation for analyzing blockchain adoption within the public sector, especially in contexts aiming for enhanced transparency, accountability, and efficiency in financial management (Garanina et al. 2022).

Hypotheses Development

The Unified Theory of Acceptance and Use of Technology (UTAUT), introduced by (Venkatesh et al. 2003), remains one of the most

robust frameworks for analyzing technology adoption behaviors. This model integrates constructs from earlier theories such as the Theory of Reasoned Action (TRA), Technology Acceptance Model (TAM), Motivational Model (MM), Theory of Planned Behavior (TPB), Model of PC Utilization (MPCU), Innovation Diffusion Theory (IDT), and Social Cognitive Theory (SCT) and identifies four primary determinants: performance expectancy, effort expectancy, social influence, and facilitating conditions. Recent empirical studies Yen & Wang (2021) confirm the continued relevance of these constructs, particularly in the context of emerging technologies such as blockchain.

In the public sector, blockchain adoption introduces unique institutional and operational considerations. Consequently, the UTAUT framework is often extended with additional variables to capture context-specific dynamics. Among these, complexity has been recognized as a barrier to adoption, as higher perceived complexity can reduce the willingness to implement blockchain-based accounting systems (Bonyuet 2020; Pratiwi & Ermaya 2024). Conversely, relative advantage, reflecting the perceived superiority of blockchain over existing systems in terms of transparency, traceability, and fraud prevention, has been shown to significantly enhance adoption intentions (Stratopoulos & Wang 2022).

Trust is another critical factor in the public sector, where technology must align with principles of security, reliability, and public accountability. Studies indicate that higher trust blockchain's technical integrity institutional endorsement positively influences adoption likelihood (Chowdhury et al. 2023; Mishra et al. 2023). Furthermore, competitive pressure stemming from benchmarking against government bodies or fulfilling intergovernmental performance standards can act as an external driver accelerating blockchain adoption (Alkafaji et al. 2023; Shao et al. 2021).

Complexity and Intention to Use Technology

In the UTAUT framework, effort expectancy represents the perceived ease of using technology. Conversely, complexity captures users' perception of how difficult or demanding it is to understand and apply a new technology in practice. A higher level of perceived complexity generally decreases users' willingness to adopt technological innovations, as it increases the cognitive effort required to operate the system and raises feelings of uncertainty and anxiety (Venkatesh et al. 2003). Many studies highlight complexity as a barrier to technology adoption, particularly in organizational settings where users possess limited technical skills or experience with digital transformation. In the context of blockchainbased accounting information systems in local governments, public employees (PNS) may perceive blockchain as difficult to understand and operate due to its technical nature involving cryptographic mechanisms and decentralized structures. Such perceptions can lead to hesitation, fear of making errors, and a lack of confidence in using the technology effectively. (Georgiou et al. 2024; Neves et al. 2025). Consequently, greater complexity tends to reduce employees' intention to use blockchain systems, as they view the technology as requiring excessive effort and specialized expertise. This is consistent with prior research indicating that complexity negatively influences the adoption of digital technologies in the public sector (Zhang et al. 2020).

H₁: Complexity has a negative effect on the intention to use technology in local governments.

Relative Advantage and Intention to Use Technology

The concept of relative advantage, describes the degree to which an innovation is perceived as superior to the previous technology or process. In UTAUT, this aligns with performance expectancy the belief that the new technology will enhance performance (Faccia &

Petratos 2021). For blockchain technology, relative advantage is evident in improved data transparency, faster transaction processing, automated verification, and decision-making efficiency (Hartley et al. 2022; Seshadrinathan & Chandra 2021). Such advantages also enhance accountability and trust, as blockchain provides secure and immutable records. Recent empirical findings confirm that clear, measurable benefits significantly contribute to adoption intentions (Malik et al. 2021; Mishra et al. 2020).

H₂: Relative advantage has a positive effect on the intention to use technology in local governments.

Trust and Intention to Use Technology

Although trust is not one of the core constructs of the UTAUT model, it plays a critical role in technology adoption, particularly in decentralized systems such as blockchain. Trust involves the belief that technology can maintain data integrity, ensure transaction security, and prevent unauthorized access (Noman & Gwenhure 2025). In the public sector, blockchain's ability to provide immutable and verifiable records is highly relevant for meeting accountability requirements (Hamadeh et al. 2025; Shahzad et al. 2024). Cross-sector studies consistently show that trust is a significant predictor of blockchain adoption (Krishna et al. 2024; Maragno et al. 2023).

H₃: Trust has a positive effect on the intention to use technology in local governments.

Facilitating Conditions and Intention to Use Technology

Facilitating conditions, a core UTAUT construct, refer to the availability of resources and support necessary to effectively use technology. This includes infrastructure, hardware and software, managerial support, technical assistance, and skill development programs (Jena 2022; Seshadrinathan & Chandra 2025). In blockchain adoption, adequate support reduces technical barriers and

increases user confidence (Malik et al. 2021). Moreover, a work environment that fosters innovation and collaboration further improves the likelihood of successful adoption (Faccia & Petratos 2021; Fang et al. 2025).

H₄: Facilitating conditions have a positive effect on the intention to use technology in local governments.

Social Influence and Intention to Use Technology

Social influence refers to the extent to which an individual perceives that important others believe they should use a particular technology (Hamadeh et al. 2025; Malik et al. 2021). This influence can come from colleagues, supervisors, industry leaders, or institutional culture. Explicit support from management and role modeling by respected peers can enhance perceptions of usefulness and legitimacy for blockchain adoption (Shahzad et al. 2024). Subjective norms and social expectations reinforce beliefs and encourage adoption intentions (Seshadrinathan & Chandra 2025; Slapničar et al. 2023).

H₅: Social influence has a positive effect on the intention to use technology in local governments.

Competitive Pressure and Intention to Use Technology

Competitive pressure is not a core UTAUT construct but is relevant in the Technology-Organization-Environment (TOE) framework, which highlights external forces as drivers of innovation adoption. In the public sector, competitive pressure may arise from efficiency, transparency. demands for accountability, and improved service quality (Al-Mamary et al. 2025, Mensah & Khan 2024). Blockchain offers strategic advantages through management. tamper-proof data secure records, and audit readiness (Zhou et al. 2024; Tan et al. 2025). Recent studies confirm that competitive pressure increases the likelihood of adopting new technology to maintain legitimacy

and stakeholder trust (Abdel-Hamid et al., 2022; Nofel et al. 2024).

H₆: Competitive pressure has a positive effect on the intention to use technology in local governments.

METHOD

The research sample comprises 295 respondents representing local government employees in Yogyakarta who are involved in the use or management of Accounting Information Systems. Yogyakarta was selected as the research location because it is recognized as one of Indonesia's leading regions in implementing digital governance and smart city initiatives. The local government has shown strong commitment to digital transformation and transparency in financial management, supported by collaborations with universities and technology institutions that actively promote public sector accounting. innovation in Therefore, Yogyakarta provides a representative and strategic context for examining the adoption of blockchain-based accounting information systems in local governments. The selection of respondents was conducted using purposive sampling, targeting individuals with relevant roles and knowledge of blockchain technology implementation in public sector accounting.

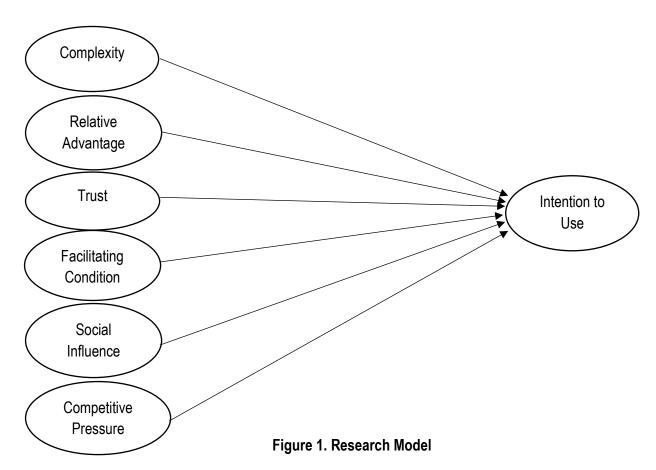
The purposive sampling technique was chosen to ensure that the respondents have involvement with financial administrative applications, thus providing relevant insights into the adoption of blockchain technology in Accounting Information Systems (De Filippi et al. 2022; Lombardi et al. 2025). This approach aligns with prior research in technology adoption that emphasizes the importance of respondent expertise improving the validity of findings (Raymond et al. 2019). The diversity in age, educational background, and professional certification strengthens the generalizability of the results while maintaining the specificity of the research context.

This study applies a quantitative research design with a survey method to investigate the effects of complexity, relative advantage, trust, facilitating conditions, social influence, and competitive pressure on the intention to adopt blockchain-based technology within local government accounting information systems (Qasim & Kharbat 2020; Lombardi et al. 2025). Primary data were collected through structured questionnaires, which were pretested by five experts in accounting information systems to ensure item clarity, construct validity, and content alignment. Measurement items for each variable were adapted from validated instruments in prior literature: complexity from Joshi and Sharma (2023); and relative advantage and trust form Lee (2023); facilitating conditions and social influence from (Benchis et al. 2025); and competitive pressure (Wang et al. 2022; Wong et al. 2024). The dependent variable, intention to use, was operationalized following the Unified Theory of Acceptance and Use of Technology (UTAUT) and recent empirical validations in government technology adoption contexts (Sousa 2023). questionnaire items were measured using a fivepoint Likert scale ranging from 1 ("strongly disagree") to 5 ("strongly agree"), consistent with recommendations.

The minimum required sample size was determined using G*Power 3.1.9.7 following established methodological guidelines. A total of 663 questionnaires were distributed, and 295 valid responses were obtained, exceeding the required minimum sample threshold and achieving a 45% response rate. Data analysis was conducted using Partial Least Squares Structural Equation Modeling (PLS-SEM) with

SmartPLS 4.0 due to its suitability for exploratory and predictive research. The analytical procedures included assessing construct validity and reliability, evaluating model fit, and testing the research hypotheses through bootstrapping techniques in accordance with recommended PLS-SEM procedures. Table 1 presents the measurement instruments used in this study, including the constructs, indicators, and their reference sources. This table helps clarify how each variable was operationalized and measured to ensure the reliability and validity of the research model.

The research model in this study was developed based on the integration of prior empirical findings and theoretical perspectives regarding technology adoption in accounting information systems (Koerniawan & Wibowo 2023; Fang et al. 2025). Several variables, including complexity, relative advantage, trust, facilitating conditions, social influence, and competitive pressure, have been identified as critical determinants influencing the intention to use blockchain-based accounting information systems (Gunawan et al. 2025; Rupa et al. 2025). Recent studies highlight that complexity often acts as a barrier to technology adoption, as higher perceived difficulty reduces user willingness to adopt new systems (Sherif & Mohsin 2021; Tangi et al. 2022). Conversely, relative advantage has consistently been shown to positively impact adoption decisions, as users are more likely to embrace innovations that provide efficiency and effectiveness compared to traditional systems (Oesterreich et al. 2019).


Table 1. Measurement Instrument of Variables

Variables	Definition	Indicators
Social	The extent to which an individual perceives that	Three measurement
Influence (SI)	important stakeholders believe they should adopt	items adapted from
	blockchain in AIS (Sherif & Mohsin 2021)	(Sherif & Mohsin 2021)
Facilitating	The degree to which an individual believes that	Four measurement
Conditions	organizational and technical infrastructure exists to	items adapted from
(FC)	support blockchain adoption in AIS (Garanina et al.	(Garanina et al. 2022;
	2022; Lardo et al. 2022)	<u>Lardo et al. 2022)</u>
Complexity	The extent to which blockchain-based AIS is perceived	Three measurement
(COM)	as difficult to understand or use, potentially hindering	items adapted from
	adoption (Akter et al. 2024)	(Akter et al. 2024)
Relative	The perception that blockchain adoption offers superior	Four measurement
Advantage	benefits compared to current AIS, such as transparency,	items adapted from
(RA)	traceability, and fraud prevention (Han et al. 2023;	(Han et al., 2023;
	Hossain et al. 2024).	Hossain et al. 2024).
Trust (TRU)	The degree to which users have confidence in	Four measurement
	blockchain's reliability, security, and immutability in AIS	items adapted from
	(Bonyuet 2020; Ciappei et al. 2023).	(Bonyuet 2020; Ciappei
• 4141	-	<u>et al. 2023)</u> .
Competitive	The extent to which external market or regulatory forces	Three measurement
Pressure (CP)	drive local governments to adopt blockchain-based AIS	items adapted from
	(Balios et al. 2020; Utami et al. 2023).	(Balios et al. 2020;
	T1	<u>Utami et al. 2023)</u> .
Intention to	The extent to which individuals have a conscious plan or	Three measurement
Use (ITU)	readiness to use blockchain-based accounting	items adapted from
	information systems in their organizational tasks. This	(Han et al. 2023; Qasim
	reflects a user's willingness and commitment to adopt	<u>& Kharbat 2020)</u> .
	the technology in the near future (Han et al. 2023;	
	Qasim & Kharbat 2020).	

Trust also emerges as a crucial factor, particularly in blockchain contexts where data integrity and transparency are vital (González-Mendes et al. 2024; Haija et al. 2025). In addition, facilitating conditions, such as organizational support and resource availability, are reported to strengthen technology adoption. Social influence, which reflects peer and managerial pressure, significantly affects behavioral intention in public sector adoption of

new technologies (Nofel et al. 2024). Finally, competitive pressure has been found to drive organizations to adopt innovative accounting systems to maintain legitimacy and competitiveness in the digital era (Khalfan et al. 2022; Boonstra & Van Offenbeek 2021).

Based on these insights, the proposed research model is constructed as illustrated in Figure 1.

RESULTS Descriptive Statistics and Correlation

The demographic profile indicates that 55.59% of the respondents are male and 44.41% female. This proportion reflects the higher representation of male employees in managerial and technical positions within local governments, particularly in departments handling accounting and information systems. Such roles are closely associated with decisionmaking and technology implementation, making insights critical for understanding blockchain adoption. Most participants are within the age ranges of 20-35 years (45.76%) and 36-50 years (45.08%), suggesting that the majority belong to an active and productive workforce more adaptable to technological innovation. Younger employees are generally more familiar with digital tools and show higher

readiness to engage with emerging technologies such as blockchain. In terms of education, most respondents hold a Bachelor's degree (62.04%), followed by a Master's degree (37.23%) and a Doctorate (0.73%). Furthermore, 67.12% have an accounting background, which ensures that respondents possess the technical and financial literacy necessary to evaluate blockchain's applicability in accounting information systems. This combination of demographic characteristics supports the study's validity, as it captures the perceptions of individuals most relevant to blockchain-based public sector accounting systems. Table 2 summarizes the demographic characteristics of the respondents, such as gender, age, education level, and work experience. This information provides an overview of the sample distribution and supports the interpretation of the study's findings.

Table 2. Demographic Profile of Respondents

Category	Frequency (n)	Percentage (%)		
Gender	· · ·			
Male	164	55.59		
Female	131	44.41		
Age				
20–35 years	135	45.76		
36–50 years	133	45.08		
> 50 years	27	9.16		
Education Level				
Bachelor's	183	62.04		
Master's	110	37.23		
Doctorate	2	0.73		
Educational Background				
Accounting	198	67.12		
IT	52	17.63		
Non-IT/Non-accounting	45	15.25		
Professional Certification				
Yes	167	56.61		
No	128	43.39		

These findings are consistent with prior studies, which also emphasized that trust and perceived complexity strongly influence adoption intentions in emerging technologies (Kumar Sharma 2022; Wamba et al. 2024). Furthermore, recent research in public sector contexts confirms that relative advantage and facilitating conditions often lag behind in shaping adoption due to institutional and bureaucratic constraints (Lai et al. 2023; Nofel et al. 2024).

Thus, the descriptive analysis provides preliminary insights that enrich the interpretation of the PLS-SEM results in the next stage of analysis. Table 3 displays the results of the descriptive statistical analysis for each research variable, including the mean, minimum, maximum, and standard deviation values. These results provide a general description of the data characteristics and distribution used in this study.

Table 3. Results of Descriptive Statistics Tests

I abi	e J. Results O	i Describi	live Statist	162 16212	
Variable	N	Min	Max	Mean	Std. Dev
Social Influence	295	6	15	10.48	1.786
Complexity	295	4	20	12.86	2.646
Trust	295	7	20	14.43	2.378
Facilitating Conditions	295	2	10	7.02	1.309
Relative Advantage	295	2	10	5.86	1.390
Competitive Pressure	295	5	15	10.77	1.616
Intention to Use	295	5	20	13.81	2.361

Table 3 presents the results of descriptive statistical tests for each construct. The analysis shows that the mean values of the variables ranged from 5.86 (Relative Advantage) to 14.43 (Trust). Trust (M = 14.43; SD = 2.378) and Intention to Use (M = 13.81; SD = 2.361)obtained the highest average scores, indicating that respondents perceive blockchain adoption information accounting systems trustworthy and demonstrate a relatively strong behavioral intention to adopt the technology. Meanwhile, Relative Advantage (M = 5.86; SD = 1.390) was rated lowest, suggesting that respondents may not yet fully perceive the comparative benefits of blockchain technology over existing systems.

In addition, Complexity (M = 12.86; SD = 2.646) scored moderately high, reflecting that respondents acknowledge certain challenges associated with blockchain-based systems. Social Influence (M = 10.48; SD = 1.786) and Competitive Pressure (M = 10.77; SD = 1.616)

show consistent values, indicating that external pressures and peer influences play a role, but not as dominant as trust or behavioral intention. Facilitating Conditions (M = 7.02; SD = 1.309) highlight the availability of organizational and technical resources perceived by respondents.

Convergent Validity and Reliability

Convergent validity and reliability were assessed to ensure the adequacy of the measurement model. The results of the convergent validity test, as presented in Table 4, show that all indicator loadings exceeded the minimum threshold value of 0.70 and the Average Variance Extracted (AVE) values were above 0.50, confirming satisfactory convergent validity for all constructs (Hair et al. 2014). Furthermore, the reliability results displayed in Table 5 indicate that both Cronbach's Alpha and Composite Reliability (CR) values were greater than 0.70, demonstrating internal consistency and reliability of the measurement model.

Table 4. Outer Loading

	Table 4. Outer Loading			
Variable	Indicator (Item Statement)	Outer Loading	AVE	
COM (Complexity)			0.791	
	COM1 - Conceptually, Blockchain Technology is difficult to understand	0.823		
	COM2 - Using Blockchain Technology is not easy	0.951		
CP (Competitive Pressure)			0.860	
	CP1 - Competition in the modern era will require local government agencies (OPD) to adopt Blockchain Technology	0.930		
	CP2 - To improve performance, local government agencies (OPD) need to implement Blockchain Technology.	0.925		
FC (Facilitating Conditions)	•		0.687	
	FC1 - Local government agencies (OPD) have sufficient financial resources to utilize Blockchain Technology	0.830		
	FC2 - Local governments possess skilled technicians to support the provision of Blockchain Technology	0.835		

	FC3 - Local government agencies (OPD) have the necessary knowledge to operate Blockchain	0.802	
	Technology FC4 - Blockchain Technology is perceived as attractive by employees within local government agencies (OPD).	0.849	
ITU (Intention to Use)	agencies (OFD).		0.731
110 (intention to ose)	ITU1 - It is predicted that in the future, local	0.803	0.731
	government agencies (OPD) will adopt the Government Financial Application System (SIABB)	0.000	
	ITU2 - In the near future, local government agencies (OPD) are expected to use the	0.841	
	Government Financial Application System (SIABB) ITU3 - There is an expectation that local government agencies (OPD) will implement the	0.859	
	Government Financial Application System (SIABB). ITU4 - Employees in local government agencies	0.884	
	(OPD) are expected to feel comfortable with the use of the Government Financial Application		
DA (Deletive Adventere)	System (SIABB).		0.020
RA (Relative Advantage)	DA4 Hairar blackabain incorporate the availity of	0.000	0.830
	RA1 - Using blockchain improves the quality of accounting information.	0.880	
	RA2 - Blockchain increases transparency in government financial reports.	0.929	
	RA3 - Blockchain provides more reliable data for decision-making.	0.922	
	RA4 - Blockchain increases efficiency in accounting information systems.	0.913	
SI (Social Influence)	inomidaen systeme.		0.560
	SI1 - Colleagues consistently keep up with technological developments.	0.716	0.000
	SI2 - Co-workers support technological advancement.	0.746	
	SI3 - Leaders of local government agencies (OPD) are likely to consider the use of Blockchain Technology within Government Financial	0.781	
	Application System (SIABB) as necessary		
T (Trust)			0.736
	T1 - Blockchain Technology is considered reliable.	0.873	
	T2 - Blockchain Technology can accomplish tasks in SIABB effectively.	0.906	
	T3 - Blockchain Technology is perceived as secure from potential issues	0.791	

Table 5. Cronbach's Alpha and Composite Reliability

	Cronbach's alpha	Composite reliability (rho_c)
Competitive Pressure	0.838	0.925
Complexity	0.756	0.883
Facilitating Conditions	0.849	0.898
Intention to Use	0.877	0.916
Relative Advantage	0.932	0.951
Social Influence	0.634	0.792
Trust	0.819	0.893

Discriminant Validity

Discriminant validity was assessed using the Fornell–Larcker criterion, cross-loading analysis, and the Heterotrait–Monotrait ratio (HTMT). According to Fornell and Larcker's (1981) criterion, discriminant validity is achieved when the square root of the Average Variance Extracted (AVE) for each construct is greater than its correlation with other constructs. In addition, discriminant validity was further examined using cross-loading analysis, while HTMT values below the threshold of 0.85 Sarstedt et al. (2019) and Savelyeva & Park (2022) were considered acceptable. These results are in line with recent empirical studies

that emphasize the importance of discriminant validity in ensuring construct uniqueness in PLS-SEM applications (Lesi & Safkaur 2020; Uren & Edwards 2023). Therefore, it can be concluded that the measurement model in this study demonstrates satisfactory discriminant validity, supporting the robustness thereby of subsequent structural model analysis. Table 6 presents the Fornell-Larcker criterion values used to assess discriminant validity among the constructs. The results indicate whether each construct shares more variance with its indicators than with other constructs in the model.

Table 6. Fornell-Lacker Values

	Competitive Pressure	Complexity	Facilitating Conditions	Intention to Use	Relative Advantage	Social Influence	Trust
Competitive	0.928						
Pressure							
Complexity	-0.085	0.890					
Facilitating	0.607	0.012	0.829				
Conditions							
Intention to	0.747	0.024	0.608	0.855			
Use							
Relative	0.664	0.062	0.621	0.606	0.911		
Advantage							
Social	0.481	0.032	0.577	0.481	0.575	0.748	
Influence							
Trust	0.563	0.086	0.574	0.620	0.769	0.555	0.858

As presented in Table 5, the square root of AVE for each construct (bold diagonal values) is greater than the correlations with other constructs, indicating that the constructs are empirically distinct. Furthermore, the cross-loading analysis shows that all items load higher on their respective constructs than on other constructs. In addition, all HTMT values were below the recommended threshold, thereby confirming adequate discriminant validity.

R-Square

The Adjusted R-Square values of the research model fall within the range of 0.25–0.50, indicating that the model has a low level of accuracy. Adjusted R-Square values in the range of 0.50–0.75 indicate a moderate level of accuracy, while values above 0.75 indicate a high level of accuracy (Hair et al. 2014). In this study, the R-Square value for Intention to Use is 0.634, with an Adjusted R-Square of 0.632, showing only a 0.2% difference. These results indicate that the perception of intention to use has a moderate level of accuracy, thereby supporting the model's explanatory power.

Hypothesis Test

The path coefficient analysis indicates that competitive pressure (β = 0.546, p < 0.001), facilitating conditions (β = 0.155, p = 0.006), and trust (β = 0.261, p = 0.001) significantly affect intention to use, highlighting the importance of external market dynamics, institutional support, and user confidence in technology adoption. These findings are consistent with recent studies emphasizing competitive environment and trust as critical drivers of digital transformation (Shao et al. 2021; Van Helden et al. 2025).

In contrast. complexity. relative advantage, and social influence were not significant, suggesting that in this context, user decisions are shaped more by structural and institutional factors than by individual perceptions or social drivers. This result aligns with Alkafaji et al (2023) and Shao et al. (2021) who found that in organizational settings, external pressures and resource availability outweigh individual often social or considerations in adoption behavior.

Table 7. Path Coefficient

	Нуро	Original sample (O)	Sample mean (M)	Standard deviation (STDEV)	T statistics (O/STDEV)	P values	Conclusion
Competitive Pressure → Intention to Use	H ₆	0.546	0.537	0.076	7.195	0.000	Supported
Complexity → Intention to Use	H ₁	0.050	0.042	0.043	1.172	0.121	Unsupported
Facilitating Conditions → Intention to Use	H ₄	0.155	0.157	0.062	2.501	0.006	Supported
Relative Advantage → Intention to Use	H ₂	-0.070	-0.074	0.081	0.862	0.194	Unsupported
Social Influence → Intention to Use	H ₅	0.022	0.027	0.065	0.339	0.367	Unsupported
Trust → Intention to Use	H ₃	0.261	0.270	0.084	3.103	0.001	Supported

Discussion

This study provides empirical insights into how various organizational and contextual factors shape the intention to adopt blockchain technology in *Accounting Information Systems* (AIS) within public sector institutions. By applying the *Unified Theory of Acceptance and Use of Technology* (UTAUT) as the main theoretical lens, the findings demonstrate that not all theorized variables exert the same influence, underscoring the importance of contextual adaptation when utilizing technology adoption models in government environments (Bonyuet 2020)

The evidence highlights the pivotal role of external pressure, particularly competitive pressure, in influencing public institutions to consider blockchain-based AIS. In the current era of digital governance, public entities are increasingly required to demonstrate transparency, efficiency, and responsiveness (Garanina et al. 2022). These external demands create a competitive atmosphere that pushes institutions to explore and implement advanced technological solutions. Such findings are consistent with the Technology-Organization-Environment (TOE) framework. emphasizes that environmental pressures often act as catalysts for innovation, particularly in bureaucratic settings where change is externally motivated (Eka Ramadani et al. 2023; Rahmawati & Subardio 2022).

Institutional readiness, reflected in the availability of infrastructure, technical support, and managerial commitment, also emerges as a critical enabling factor (Hossain et al. 2024). The presence of facilitating conditions reduces implementation perceived barriers enhances confidence among potential users (Lardo et al. 2022). In public organizations, where systemic inertia and bureaucratic procedures are common, the assurance of robust support systems becomes essential to successful adoption. This supports the UTAUT assertion that supportive environments can significantly bolster user intention, especially for

complex technologies like blockchain (Sharma et al. 2022). Similarly, trust in the technology strengthens adoption intention, particularly in the context of public sector accountability. Blockchain's decentralized and immutable mechanisms for data recording and verification enhance organizational confidence in system reliability and align with the values of integrity and accountability that public organizations are expected to uphold (Zheng 2021).

Conversely, several assumptions from UTAUT were not supported in this study. Complexity, despite being an inherent feature of blockchain, did not emerge as a significant deterrent. This suggests that improvements in system interfaces, higher levels of digital literacy, or effective training programs may have minimized the salience of technical complexity in adoption decisions (Hartley et al. 2022). Likewise, perceived relative advantage did not significantly influence intention, which may reflect the absence of clear communication or demonstrable benefits in the organizations studied. Public institutions often adopt a cautious stance, requiring concrete evidence of efficiency gains and regulatory support before recognizing new technologies as superior alternatives (Faccia & Petratos 2021). Furthermore, social influence was not found to be a determinant of adoption, diverging from UTAUT's original assumptions. This result highlights how centralized, policy driven decision-making in public sector organizations reduces the relevance of interpersonal persuasion or normative expectations (Georgiou et al. 2024; Zhang et al. 2020).

Theoretically, this study contributes by refining the explanatory scope of the UTAUT framework in public sector AIS adoption. Traditional UTAUT applications focus primarily on individual-level determinants such as performance expectancy, effort expectancy, and social influence (Bonyuet 2020). However, the findings of this study show that in the bureaucratic context of Indonesian local governments, institutional trust and

organizational preparedness are stronger predictors of adoption intention than individual perceptions or social norms. This highlights the dominance of coercive and normative pressures such as compliance with regulations, resource allocation, and organizational legitimacy—over voluntary or discretionary motivations for change (Alkafaji et al. 2023). By integrating perspectives from the Technology Organization Environment (TOE) framework and Institutional Theory, the study demonstrates that UTAUT cannot be applied as a one-size-fits-all model but requires contextual adaptation to capture the realities of government settings. Thus, this research extends the theoretical boundaries of UTAUT by embedding institutional and organizational dimensions into a model originally centered on individual drivers, offering a more holistic understanding of technology adoption in public governance.

From a practical perspective, the results underscore that the success of blockchain adoption in public sector AIS depends less on individual innovativeness and more institutional enablers and organizational capacity. Governments and local agencies must not only invest in secure and reliable digital infrastructures but also design clear regulatory frameworks that strengthen trust in blockchainbased systems. Training and continuous capacity-building initiatives are necessary to prepare employees to operate and manage blockchain applications effectively, reducing resistance and anxiety toward new technologies (Shao et al. 2021). In addition, managerial commitment at the top level is crucial, as leadership involvement ensures alignment, resource mobilization, and long-term sustainability of adoption efforts. For policymakers, these findings highlight the importance of synchronizing blockchain initiatives with national digital transformation agendas and ensuring regulatory clarity to overcome bureaucratic inertia (Garanina et al. 2022). For practitioners in local governments, the study provides actionable guidance:

prioritize institutional trust-building, provide adequate resources and technical support, and foster a supportive organizational culture. These measures not only enhance the likelihood of successful blockchain adoption but also ensure that such adoption contributes to broader goals of transparency, accountability, and efficiency in public financial management (Chowdhury et al., 2023).

CONCLUSION

This study aimed to examine the determinants influencing the intention to adopt blockchain technology in public Accounting Information Systems (AIS). A quantitative approach was employed using a survey of local government employees, and the data were analyzed with PLS-SEM to test the effects of competitive pressure, complexity, facilitating conditions, relative advantage, social influence, and trust on intention to use blockchain in AIS. The findings reveal that competitive pressure, facilitating conditions, and trust significantly influence adoption intention, while complexity, relative advantage, and social influence do not play a significant role. These that results indicate in bureaucratic environments. external pressures and institutional preparedness are more decisive drivers of innovation than individual-level perceptions.

From a theoretical perspective, this study contributes by refining the UTAUT framework in public sector contexts, showing that institutional trust and organizational readiness serve as stronger enablers than perceived advantages or social influences. This underscores the necessity of contextual adaptation of technology adoption models when applied in government settings. From a practical perspective, the findings suggest that blockchain adoption in public AIS requires institutional trust, adequate resources, managerial commitment, and regulatory clarity. Successful implementation depends not only on individual readiness but also on strong institutional support

and alignment with broader digital transformation strategies.

Despite these contributions, this study has several limitations as it was conducted within a specific local government context, which may affect generalizability. Future studies are encouraged to expand the analysis to other regions or institutions, explore the role of evolving regulatory frameworks, and employ qualitative approaches to capture deeper

insights into organizational behavior and resistance toward blockchain adoption. In conclusion, blockchain adoption in public sector accounting is shaped more by institutional capacity and external demands than by individual-level drivers. These findings provide a better understanding of digital transformation in the public sector and offer useful directions for further academic inquiry.

REFERENCES

- Abdel Hamid, T. A., Ahmed, M. A. el A. S., Zohry, M. A. F., Elshabrawy, G. A., & Elgohary, E. M. (2022). "The Role of Digital Transformation in Improving Customer Satisfaction: An Empirical Study on Egyptian Hotels." *Electronic Journal of Information Systems in Developing Countries* 88(6): e12234. https://doi.org/10.1002/isd2.12234.
- Akter, M., Kummer, T. F., & Yigitbasioglu, O. (2024). "Looking Beyond the Hype: The Challenges of Blockchain Adoption in Accounting." *International Journal of Accounting Information Systems* 53: 100681. https://doi.org/10.1016/j.accinf.2024.100681.
- Albrecht, S. L., Green, C. R., and Marty, A. (2021). "Meaningful Work, Job Resources, and Employee Engagement." Sustainability (Switzerland) 13(7). https://doi.org/10.3390/su13073790.
- Alkafaji, B. K. A., Dashtbayaz, M. L., and Salehi, M. (2023). "The Impact of Blockchain on the Quality of Accounting Information: An Iraqi Case Study." *Risks* 11(3): 54. https://doi.org/10.3390/risks11030054.
- Al-Mamary, Y. H., Alshallaqi, M., Abubakar, A. A., Alhakimi, W., and Alhaidan, H. (2025). "A Comprehensive Conceptual Model of Digital Transformation in Public Services: Exploring Key Factors and Their Impact on Government Success." Future Business Journal 11(1): 193. https://doi.org/10.1186/s43093-025-00621-8.
- Atik, A., and Kelten, G. S. (2021). "Blockchain Technology and Its Potential Effects on Accounting: A Systematic Literature Review." *Istanbul Business Research* 50(2): 495–515. https://doi.org/10.26650/ibr.2021.50.806870.
- Azmi, I. F., and Nugroho, A. A. (2023). "Anti-Corruption System 4.0: The Adoption of Blockchain Technology in the Public Sector." *Integritas: Jurnal Antikorupsi* 9(1): 93–108. https://doi.org/10.32697/integritas.v9i1.985.
- Badan Pengawasan Keuangan dan Pembangunan. (2023). *Laporan Keuangan Tahun 2023 (Audited)*. Jakarta: BPKP. https://www.bpkp.go.id/.
- Balios, D., Kotsilaras, P., Eriotis, N., & Vasiliou, D. (2020). "Big Data, Data Analytics and External Auditing." Journal of Modern Accounting and Auditing 16(5): 213–224. https://doi.org/10.17265/1548-6583/2020.05.003.
- Benchis, M. P., Shahzad, K., & Dan, S. (2025). "Comparative Analysis of Blockchain Adoption in the Public and Private Sectors: A Technology-Organization-Environment (TOE) Framework Approach." *Journal of Innovation and Knowledge* 10(4): 100746. https://doi.org/10.1016/j.jik.2025.100746.
- Bonyuet, D. (2020). "Overview and Impact of Blockchain on Auditing." *International Journal of Digital Accounting Research* 20: 31–43. https://doi.org/10.4192/1577-8517-v20_2.
- Boonstra, A., and Van Offenbeek, M. (2021). "Challenges in Managing the Digital Transformation of Health Care Organizations: A Review of the Literature." *International Journal of Information Management* 58: 102328. https://doi.org/10.1016/j.ijinfomgt.2020.102328.
- Cahyono, S. (2023). "A Bibliographic Study for Management Control Systems on Journal of Management Accounting Research." *Jurnal Bisnis dan Akuntansi* 25(1): 1–16. https://jurnaltsm.id/index.php/JBA. https://doi.org/10.34208/jba.v25i1.354.
- Chowdhury, E. K., Stasi, A., & Pellegrino, A. (2023). Blockchain Technology in Financial Accounting: Emerging Regulatory Issues. In Review of Economics and Finance (Vol. 21). https://doi.org/10.55365/1923.x2023.21.94.
- Ciappei, C., Liberatore, G., & Manetti, G. (2023). "A Systematic Literature Review of Studies on Women at the Top of Firm Hierarchies: Critique, Gap Analysis and Future Research Directions." *Sustainability Accounting, Management and Policy Journal* 14(7): 202–231. https://doi.org/10.1108/SAMPJ-09-2022-0453.

- De Filippi, P., Mannan, M., & Reijers, W. (2022). The alegality of blockchain technology. Policy and Society, 41(3), 358–372. https://doi.org/10.1093/polsoc/puac006
- Eka Ramadani, R., Sofyani, H., & Putra, A. Z. (2023). "Faktor-Faktor yang Memengaruhi Kesiapan Pegawai Pemerintah Daerah dalam Mengadopsi Teknologi Blockchain pada Sistem Informasi Akuntansi Manajemen." *Jurnal Manajemen Dinamis* 1(2): 109–122. https://doi.org/10.61104/jmd.v1i2.25.
- Faccia, A., & Petratos, P. (2021). "Blockchain, Enterprise Resource Planning (ERP) and Accounting Information Systems (AIS): Research on E-Procurement and System Integration." *Applied Sciences (Switzerland)* 11(15): 6914. https://doi.org/10.3390/app11156914.
- Fang, Q., Wang, Z., and Dang, L. (2025). "Audit Effort in the Digital Era: Uncovering the Dynamic Interplay of Business Strategy and Digital Transformation." *International Journal of Accounting Information Systems* 56: 100747. https://doi.org/10.1016/j.accinf.2025.100747.
- Garanina, T., Ranta, M., & Dumay, J. (2022). "Blockchain in Accounting Research: Current Trends and Emerging Topics." Accounting, Auditing and Accountability Journal 35(7): 1507–1533. https://doi.org/10.1108/AAAJ-02-2021-5144.
- Georgiou, I., Sapuric, S., Lois, P., & Thrassou, A. (2024). "Blockchain for Accounting and Auditing and for Cryptocurrencies: A Systematic Literature Review and Future Research Directions." *Journal of Risk and Financial Management* 17(7): 324. https://doi.org/10.3390/jrfm17070324.
- González-Mendes, S., González-Sánchez, R., Costa, C. J., & García-Muiña, F. E. (2024). "Factors Influencing Blockchain Adoption in the Tourism Industry: An Empirical Study." *Technology Analysis and Strategic Management* 36(7): 837–856. https://doi.org/10.1080/09537325.2024.2389131.
- Gunawan, J. F., Christantio, R., Martusa, H. R., & Meythi, M. (2025). "Risk Management, Company Risk, and the Moderating Role of Board Gender Diversity." *Jurnal Bisnis dan Akuntansi* 27(1): 45–58. https://doi.org/10.34208/jba.v27i1.486.
- Haija, A. A. A., Al-Daoud, K. I., Al-Oraini, B., Vasudevan, A., Al-Habashneh, A. G., Luo, P., and Mohammad, A. A. S. (2025). "The Impact of Blockchain Technology on Financial Transparency: A Study of SMEs in Emerging Economies." *Uncertain Supply Chain Management* 13(3): 537–542. https://doi.org/10.5267/j.uscm.2024.8.014.
- Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). "Partial Least Squares Structural Equation Modeling (PLS-SEM): An Emerging Tool in Business Research." *European Business Review* 26(2): 106–121. https://doi.org/10.1108/EBR-10-2013-0128.
- Hamadeh, A. H., Nouraldeen, R. M., and Mahboub, R. M. (2025). "Auditors' Intentions to Use Blockchain Technology: Do Trust in Technology, UTAUT Factors, and Age Matter?" *International Journal of Applied Economics, Finance and Accounting* 22(2): 53–66. https://doi.org/10.33094/ijaefa.v22i2.2300.
- Han, H., Shiwakoti, R. K., Jarvis, R., Mordi, C., and Botchie, D. (2023). "Accounting and Auditing with Blockchain Technology and Artificial Intelligence: A Literature Review." *International Journal of Accounting Information Systems* 48: 100641. https://doi.org/10.1016/j.accinf.2023.100641.
- Hartley, J. L., Sawaya, W., and Dobrzykowski, D. (2022). "Exploring Blockchain Adoption Intentions in the Supply Chain: Perspectives from Innovation Diffusion and Institutional Theory." *International Journal of Physical Distribution and Logistics Management* 52(2): 190–211. https://doi.org/10.1108/IJPDLM-05-2020-0163.
- Hossain, M. Z., Johora, F. T., Raja, M. R., & Hasan, L. (2024). "Transformative Impact of Artificial Intelligence and Blockchain on the Accounting Profession." *European Journal of Theoretical and Applied Sciences* 2(6): 144–159. https://ejtas.com/index.php/journal/article/view/1244. https://doi.org/10.5281/zenodo.10583245.
- Indrayani, K. D., & Widiastuti, H. (2020). "Pengaruh Penerapan Sistem Akuntansi Keuangan Pemerintah Daerah dan Sistem Pengendalian Internal Terhadap Kualitas Laporan Keuangan Pemerintah Daerah Dengan Kompetensi Sumber Daya Manusia Sebagai Variabel Moderasi (Studi Empiris Pada Satuan Kerja Perangkat Daerah Kabupaten Klaten)." *Reviu Akuntansi dan Bisnis Indonesia* 4(1): 41–53. https://doi.org/10.18196/rab.040148.
- Islami, M. P., and Mita, A. F. (2022). "Akuntansi untuk Uang Kripto (Cryptocurrency) Studi Kasus di Galaxy Digital dan Meitu." *Reviu Akuntansi dan Bisnis Indonesia* 6(2): 146–162. https://doi.org/10.18196/rabin.v6i2.16055.
- Ismagilova, E., Hughes, L., Dwivedi, Y. K., and Raman, K. R. (2019). "Smart Cities: Advances in Research—An Information Systems Perspective." *International Journal of Information Management* 47: 88–100. https://doi.org/10.1016/j.ijinfomgt.2019.01.004.

- Jena, R. K. (2022). "Examining the Factors Affecting the Adoption of Blockchain Technology in the Banking Sector: An Extended UTAUT Model." *International Journal of Financial Studies* 10(4): 86. https://doi.org/10.3390/ijfs10040090.
- Joshi, S., and Sharma, M. (2023.) "Assessment of Implementation Barriers of Blockchain Technology in Public Healthcare: Evidences from Developing Countries." *Health Systems* 12(2): 223–242. https://doi.org/10.1080/20476965.2023.2206446.
- Judijanto, L., & Gamaliel, F. (2024). "Analyzing the Impact of Blockchain Technology on Transaction Security with a Bibliometric Perspective." *The EastAsouth Journal of Information System and Computer Science* 2(3): 136–146. https://doi.org/10.61104/ejsiscs.v2i3.254.
- Khalfan, M., Azizi, N., Haass, O., Maqsood, T., & Ahmed, I. (2022). "Blockchain Technology: Potential Applications for Public Sector E-Procurement and Project Management." *Sustainability (Switzerland)* 14(10): 5791. https://doi.org/10.3390/su14105791.
- Kirkpatrick, I., Sturdy, A. J., Reguera Alvarado, N., and Veronesi, G. (2023). "Beyond Hollowing Out: Public Sector Managers and the Use of External Management Consultants." *Public Administration Review* 83(3): 537–551. https://doi.org/10.1111/puar.13612.
- Koerniawan, I., and Wibowo, A. (2023). "Blockchain Technology in the Perspective of Public Accounting in Indonesia." *AIS The Best: Accounting Information Systems and Information Technology Business Enterprise* 8(2): 106–120. https://doi.org/10.34010/aisthebest.v8i2.11184.
- Koo, F., and Cuandra, F. (2022). "Analysis of Factors Affecting International E-Wallet Use." *Jurnal Bisnis dan Akuntansi* 24(2): 337–352. https://jurnaltsm.id/index.php/JBA.
- Krishna, G. H., Babu, K. V. S. M., Dwivedi, D., Chakraborty, P., Yemula, P. K., & Pal, M. (2024). "Energy Sharing Among Resources Within Electrical Distribution Systems: A Systematic Review." *arXiv preprint* arXiv:2401.01597.
- Kumari, A., & Devi, N. C. (2022). "The Impact of FinTech and Blockchain Technologies on Banking and Financial Services." *Technology Innovation Management Review* 12(12): 48–58. https://doi.org/10.22215/timreview/1564.
- Kumar Sharma, S. (2022). "Theoretical Framework for Blockchain Technology Adoption in Public Sector Organizations: A Transaction Cost Theory Perspective." In *Proceedings of the International Conference on Advanced Computer Science and Information Systems*, 323–330. https://doi.org/10.1007/978-3-031-17968.
- Lai, P. C., Toh, E. B. H., Polas, M. R. H., & Tabash, M. I. (2023). "Intention to Use Blockchain Technologies: Evidence from Two Regions—ASEAN and Middle East." *International Journal of Innovation and Technology Management* 20(8): 2350049. https://doi.org/10.1142/S0219877023500499.
- Lombardi, D. R., Kim, M., Sipior, J. C., and Vasarhelyi, M. A. (2025). "The Increased Role of Advanced Technology and Automation in Audit: A Delphi Study." *International Journal of Accounting Information Systems* 56: 100733. https://doi.org/10.1016/j.accinf.2025.100733.
- Lardo, A., Corsi, K., Varma, A., & Mancini, D. (2022). "Exploring Blockchain in the Accounting Domain: A Bibliometric Analysis." *Accounting, Auditing and Accountability Journal* 35(9): 204–233. https://doi.org/10.1108/AAAJ-02-2021-5115.
- Larikova, T., Ivankov, V., and Novichenko, L. (2023). "Implementation of Blockchain Technology in the System of Accounting and Analytical Support for the Public Sector." *Eastern-European Journal of Enterprise Technologies* 5(13(125)): 77–87. https://doi.org/10.15587/1729-4061.2023.290024.
- Lee, H. (2023). "The Acceleration of Blockchain Technology Adoption in Taiwan." *Heliyon* 9(11): e21887. https://doi.org/10.1016/j.heliyon.2023.e21887.
- Lesi, H., & Safkaur, O. (2020). "The Influence of Information Technology Covid-19 Plague on Financial Statements and Business Practices." *Ilomata International Journal of Tax & Accounting* 1(3): 122–132. https://doi.org/10.52728/ijtc.v1i3.77.
- Lita Permatasari, C., Iga Luhsasi, D., & Salwa Salsabila, S. (2024). "Development of Education Accounting Information System." *Jurnal Akuntansi Terapan Indonesia* 7(2): 115–124. https://doi.org/10.18196/jati.v7i2.21511.
- Malik, S., Chadhar, M., Vatanasakdakul, S., & Chetty, M. (2021). "Factors Affecting the Organizational Adoption of Blockchain Technology: Extending the Technology Organization Environment (TOE) Framework in the Australian Context." Sustainability (Switzerland) 13(16): 9404. https://doi.org/10.3390/su13169404.
- Marselita, O. (2024). "Blockchain Technology and Quality of Accounting Information: A Systematic Literature Review." *Jurnal Akuntansi dan Keuangan* 26(2): 103–117. https://doi.org/10.9744/jak.26.2.103-117.

- Maragno, G., Tangi, L., Gastaldi, L., and Benedetti, M. (2023). "Exploring the Factors, Affordances and Constraints Outlining the Implementation of Artificial Intelligence in Public Sector Organizations." *International Journal of Information Management* 73: 102686. https://doi.org/10.1016/j.ijinfomgt.2023.102686.
- Mensah, I. K., & Khan, M. K. (2024). "Unified Theory of Acceptance and Use of Technology (UTAUT) Model: Factors Influencing Mobile Banking Services' Adoption in China." SAGE Open 14(1): 1–17. https://doi.org/10.1177/21582440241234230.
- Mishra, A., Rana, N. P., and Dwivedi, Y. K. (2020). "Social Media Use in the Workplace: Exploring the Impact on Employees' Work Performance." *International Journal of Information Management* 52: 102069. https://doi.org/10.1016/j.ijinfomgt.2019.102069.
- Mishra, A., Shukla, A., Rana, N. P., Currie, W. L., and Dwivedi, Y. K. (2023). "Re-Examining Post-Acceptance Model of Information Systems Continuance: A Revised Theoretical Model Using MASEM Approach." *International Journal of Information Management* 68: 102571. https://doi.org/10.1016/j.ijinfomgt.2022.102571.
- Müller, W. (2025). "Determinants of Smart Contract Adoption in Supply Chains: A UTAUT-Based PLS-SEM Analysis." *Operations Management Research* 18(2): 157–169. https://doi.org/10.1007/s12063-025-00560-1.
- Neves, C., Oliveira, T., Cruz-Jesus, F., and Venkatesh, V. (2025). "Extending the Unified Theory of Acceptance and Use of Technology for Sustainable Technologies Context." *International Journal of Information Management* 80: 102838. https://doi.org/10.1016/j.ijinfomgt.2024.102838.
- Nofel, M., Marzouk, M., Elbardan, H., Saleh, R., & Mogahed, A. (2024). "Integrating Blockchain, IoT, and XBRL in Accounting Information Systems: A Systematic Literature Review." *Journal of Risk and Financial Management* 17(8): 372. https://doi.org/10.3390/jrfm17080372.
- Noman, E. P., and Gwenhure, A. K. (2025). "Factors Influencing the Diffusion of Blockchain Technology in the Indonesian Government." *Journal of Information Systems Engineering and Business Intelligence* 11(2): 215–225. https://doi.org/10.20473/jisebi.11.2.215-225.
- Norbu, T., Park, J. Y., Wong, K. W., & Cui, H. (2024). "Factors Affecting Trust and Acceptance for Blockchain Adoption in Digital Payment Systems: A Systematic Review." Future Internet 16(3): 106. https://doi.org/10.3390/fi16030106.
- Oesterreich, T. D., Teuteberg, F., Bensberg, F., and Buscher, G. (2019). "The Controlling Profession in the Digital Age: Understanding the Impact of Digitisation on the Controller's Job Roles, Skills and Competences." *International Journal of Accounting Information Systems* 34: 100432. https://doi.org/10.1016/j.accinf.2019.100432.
- Padovani, E., and lacuzzi, S. (2021). "Real-Time Crisis Management: Testing the Role of Accounting in Local Governments." *Journal of Accounting and Public Policy* 40(3): 106854. https://doi.org/10.1016/j.jaccpubpol.2021.106854.
- Pham, L. T., & Dau, T. K. T. (2022). "Online Learning Readiness and Online Learning System Success in Vietnamese Higher Education." *International Journal of Information and Learning Technology* 39(2): 147–165. https://doi.org/10.1108/IJILT-09-2021-0169.
- Pitria, N. G. A., Wijayanti, W., Pontoh, G. T., & Indrijawati, A. (2024). "Systematic Literature Review on Peer-To-Peer Lending: A Comparison Between Traditional Lending and Decentralized Finance Models." *Jurnal Bisnis dan Akuntansi* 26(2): 233–254. https://doi.org/10.34208/jba.v26i2.451.
- Pradana, Y. A., & Utama, A. G. S. (2024). "Optimizing Digital Marketing for Aviation Selection: A Systematic Review of Emerging Trends." *Jurnal Bisnis dan Akuntansi* 26(1): 1–18. https://doi.org/10.34208/jba.v26i1.450.
- Pratiwi, A. E., & Ermaya, H. N. L. (2024). "Implementation of Blockchain Technology on Accounting Information System for Transaction Security and Data Reliability." *Jurnal Akuntansi, Audit dan Sistem Informasi Akuntansi* 8(1): 64–74. https://doi.org/10.30871/jaasia.v8i1.7365.
- Prux, P. R., Momo, F. da S., & Melati, C. (2021). "Opportunities and Challenges of Using Blockchain Technology in Government Accounting in Brazil." *Brazilian Administration Review* 18(Special Issue): e210006. https://doi.org/10.1590/1807-7692bar2021210006.
- Pugna, I. B., and Duţescu, A. (2020). "Blockchain: The Accounting Perspective." *Proceedings of the International Conference on Business Excellence* 14(1): 214–224. https://doi.org/10.2478/picbe-2020-0020.
- Qasim, A., and Kharbat, F. F. (2020). "Blockchain Technology, Business Data Analytics, and Artificial Intelligence: Use in the Accounting Profession and Ideas for Inclusion into the Accounting Curriculum." *Journal of Emerging Technologies in Accounting* 17(1): 107–117. https://doi.org/10.2308/jeta-52649.

- Rahmawati, M. I., & Subardjo, A. (2022). "Apakah Blockchain Mampu Mencegah Kecurangan Akuntansi?" *Fair Value: Jurnal Ilmiah Akuntansi dan Keuangan* 4(1): 25–35. https://doi.org/10.32670/fairvalue.v4i1.2312.
- Ramadhani, A., Aprilia Ananda, D., & Azmi, Z. (2024). "Teknologi Blockchain dan Sistem Akuntansi: Potensi dan Tantangan." *Indonesian Journal of Economics* 1(1): 15–28. https://doi.org/10.61104/ije.v1i1.27.
- Ramos, C. R. dos S., and Queiroz, M. M. (2022). "Blockchain in Education: The Influence of Trust on Adoption and Implementation." *RAUSP Management Journal* 57(3): 316–331. https://doi.org/10.1108/RAUSP-06-2021-0097.
- Raymond, L., Bergeron, F., Croteau, A. M., and Uwizeyemungu, S. (2019). "Determinants and Outcomes of IT Governance in Manufacturing SMEs: A Strategic IT Management Perspective." *International Journal of Accounting Information Systems* 34: 100422. https://doi.org/10.1016/j.accinf.2019.07.001.
- Rekunenko, I., Koldovskyi, A., Hordiienko, V., Yurynets, O., Abu Khalaf, B., and Ktit, M. (2025). "Technology Adoption in Government Management: Public Sector Transformation Analysis." *Journal of Governance and Regulation* 14(1): 150–160. https://doi.org/10.22495/jgrv14i1art14.
- Rupa, R. A., Sultana, A., Nasrin, F., Saif, A. N. M., Hossain, M. N., & Akhter, H. (2025). "Gravitating Towards Blockchain in Sustainable Higher Education: A Hybrid SEM-ANN Technique." *Discover Sustainability* 6(1): 45. https://doi.org/10.1007/s43621-025-01504-2.
- Sarstedt, M., Hair, J. F., Cheah, J. H., Becker, J. M., and Ringle, C. M. (2019). "How to Specify, Estimate, and Validate Higher Order Constructs in PLS-SEM." *Australasian Marketing Journal* 27(3): 197–211. https://doi.org/10.1016/j.ausmj.2019.05.003.
- Savelyeva, T., and Park, J. (2022). "Blockchain Technology for Sustainable Education." *British Journal of Educational Technology* 53(6): 1591–1604. https://doi.org/10.1111/bjet.13273.
- Seshadrinathan, S., and Chandra, S. (2021). "Exploring Factors Influencing Adoption of Blockchain in Accounting Applications Using Technology–Organization–Environment Framework." *Journal of International Technology and Information Management* 30(1): 30–68. https://doi.org/10.58729/1941-6679.1477.
- Seshadrinathan, S., and Chandra, S. (2025). "Trusting the Trustless Blockchain for Its Adoption in Accounting: Theorizing the Mediating Role of Technology-Organization-Environment Framework." *Financial Innovation* 11(1): 25. https://doi.org/10.1186/s40854-024-00685-5.
- Setiawan, P. A., Mangoting, Y., and Nuralim, E. (2023). "Bliss Effect of Taxpayers in Adopting Blockchain Technology." *Journal of Accounting and Investment* 24(2): 408–426. https://doi.org/10.18196/jai.v24i2.16730.
- Shahzad, K., Zhang, Q., and Khan, M. K. (2024). "Blockchain Technology Adoption in Supply Chain Management: An Investigation from UTAUT and Information System Success Model." *International Journal of Shipping and Transport Logistics* 18(2): 165–190. https://doi.org/10.1504/IJSTL.2024.137893.
- Shao, H., Zhang, Z., & Wang, B. (2021). "Research on Accounting Information Security Management Based on Blockchain." *Mobile Information Systems* 2021(11): 1–11. https://doi.org/10.1155/2021/5578256.
- Sharma, A., Bhanawat, S. S., & Sharma, R. B. (2022). "Adoption of Blockchain Technology-Based Accounting Platform." *Academic Journal of Interdisciplinary Studies* 11(2): 155–162. https://doi.org/10.36941/ajis-2022-0043.
- Sherif, K., and Mohsin, H. (2021). "The Effect of Emergent Technologies on Accountant's Ethical Blindness." *International Journal of Digital Accounting Research* 21: 61–94. https://doi.org/10.4192/1577-8517-v21 3.
- Slapničar, S., Axelsen, M., Bongiovanni, I., and Stockdale, D. (2023). "A Pathway Model to Five Lines of Accountability in Cybersecurity Governance." *International Journal of Accounting Information Systems* 51: 100642. https://doi.org/10.1016/j.accinf.2023.100642.
- Sousa, M. J. (2023). "Blockchain as a Driver for Transformations in the Public Sector." *Policy Design and Practice* 6(4): 415–432. https://doi.org/10.1080/25741292.2023.2267864.
- Stratopoulos, T. C., and Wang, V. X. (2022). "Estimating the Duration of Competitive Advantage from Emerging Technology Adoption." *International Journal of Accounting Information Systems* 47: 100577. https://doi.org/10.1016/j.accinf.2022.100577.
- Su, S., Baird, K., and Tung, A. (2022). "Controls and Performance: Assessing the Mediating Role of Creativity and Collegiality." *Journal of Management Control* 33(4): 449–482. https://doi.org/10.1007/s00187-022-00344-9.
- Su, S. X., Baird, K., and Nuhu, N. (2022). "Controllability of Performance Measures and Managerial Performance: The Mediating Role of Fairness." *Meditari Accountancy Research* 30(2): 313–341. https://doi.org/10.1108/MEDAR-07-2020-0957.

- Tahar, A., Azzahra, N. I., and Az-zahro, S. F. (2023). "Determinan Kualitas Informasi Keuangan pada Entitas Kesehatan: Peran Mediasi Sistem Informasi Akuntansi." *Reviu Akuntansi dan Bisnis Indonesia* 7(1): 264–282. https://doi.org/10.18196/rabin.v7i1.19077.
- Tan, Y., Cheng, Y., Ding, L., & Zhao, Y. (2025). "The Optimization of Batch Processing and Micro-Payment Systems in Account-Based Anonymous Blockchain Systems." *Blockchain: Research and Applications* 4(1): 100334. https://doi.org/10.1016/j.bcra.2025.100334.
- Tangi, L., Maragno, G., Benedetti, M., and Gastaldi, L. (2022). "The Role of Public Sector Innovation Labs in Fostering Digital Transformation: Evidence from Europe." *International Journal of Information Management* 64: 102472. https://doi.org/10.1016/j.ijinfomgt.2021.102472.
- Ummah, R. S., and Sofyani, H. (2024). "Testing the Intention of Employees in Local Government to Adopt Blockchain Technology in Accounting Information Systems (AIS)." *Public Accounting and Sustainability* 1(1): 1–18. https://doi.org/10.18196/pas.v1i1.3.
- Uren, V., and Edwards, J. S. (2023). "Technology Readiness and the Organizational Journey Towards Al Adoption: An Empirical Study." *International Journal of Information Management* 68: 102588. https://doi.org/10.1016/j.ijinfomgt.2022.102588.
- Utami, E. R., Sumiyana, S., Barokah, Z., and Mustakini, J. H. (2023). "IFRS 9 Implementation Indicating Asset Opacities: Even Though Predicting Earnings' Forecasts and Value Relevance in Asia-Pacific Countries." *Journal of Financial Reporting and Accounting* 21(3): 623–648. https://doi.org/10.1108/JFRA-02-2023-0045.
- Van Helden, J., Budding, T., Guarini, E., and Pattaro, A. F. (2025). "Ethics of Accounting Information Manipulation in Local Government: Opportunism or Selfishness." *Journal of Accounting and Public Policy* 54: 107356. https://doi.org/10.1016/j.jaccpubpol.2025.107356.
- Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). "User Acceptance of Information Technology: Toward a Unified View." *MIS Quarterly: Management Information Systems* 27(3): 425–478. https://doi.org/10.2307/30036540.
- Vincent, N. E., Skjellum, A., and Medury, S. (2020). "Blockchain Architecture: A Design That Helps CPA Firms Leverage the Technology." *International Journal of Accounting Information Systems* 38: 100466. https://doi.org/10.1016/j.accinf.2020.100466.
- Vos, J. F. J., and Boonstra, A. (2022). "The Influence of Cultural Values on Enterprise System Adoption: Towards a Culture–Enterprise System Alignment Theory." *International Journal of Information Management* 63: 102453. https://doi.org/10.1016/j.ijinfomgt.2021.102453.
- Wamba, S. F., Wamba Taguimdje, S. L., Lu, Q., & Queiroz, M. M. (2024). "How Emerging Technologies Can Solve Critical Issues in Organizational Operations: An Analysis of Blockchain-Driven Projects in the Public Sector." *Government Information Quarterly* 41(1): 101912. https://doi.org/10.1016/j.gig.2024.101912.
- Wang, X., Liu, L., Liu, J., & Huang, X. (2022). "Understanding the Determinants of Blockchain Technology Adoption in the Construction Industry." *Buildings* 12(10): 1709. https://doi.org/10.3390/buildings12101709.
- Widodo, J. S., and Darma, E. S. (2025). "Factors Affecting the Intention to Donate Money for Waqf Among Civil Servants in the Ministry of Religious Affairs." *Journal of Accounting and Investment* 26(2): 659–684. https://doi.org/10.18196/jai.v26i2.26088.
- Wong, S., Yeung, J. K. W., Lau, Y. Y., Kawasaki, T., & Kwong, R. (2024). "A Critical Literature Review on Blockchain Technology Adoption in Supply Chains." *Sustainability (Switzerland)* 16(12): 5174. https://doi.org/10.3390/su16125174.
- Yen, J.-C., and Wang, T. (2021). "Stock Price Relevance of Voluntary Disclosures about Blockchain Technology and Cryptocurrencies." *International Journal of Accounting Information Systems* 40: 100499. https://doi.org/10.1016/j.accinf.2021.100499.
- Zhang, Y., Xiong, F., Xie, Y., Fan, X., & Gu, H. (2020). "The Impact of Artificial Intelligence and Blockchain on the Accounting Profession." *IEEE Access* 8: 110461–110477. https://doi.org/10.1109/ACCESS.2020.3001253.
- Zhen, J., Xie, Z., and Dong, K. (2021). "Impact of IT Governance Mechanisms on Organizational Agility and the Role of Top Management Support and IT Ambidexterity." *International Journal of Accounting Information Systems* 40: 100501. https://doi.org/10.1016/j.accinf.2021.100501.

Zheng, R. (2021). "Applications Research of Blockchain Technology in Accounting System." *Journal of Physics: Conference Series* 1910(1): 012049. https://doi.org/10.1088/1742-6596/1910/1/012049.

Zhou, Y., Xu, J., and Liu, Z. (2024). "The Impact of Digital Transformation on Corporate Innovation: Roles of Analyst Coverage and Internal Control." *Managerial and Decision Economics* 45(1): 373–393. https://doi.org/10.1002/mde.4009.

This page is intentionally left blank